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a b s t r a c t

The primary purpose of this contribution is to develop a novel framework for generalized

robust design of tuned mass damper (TMD) systems as passive vibration controllers for

uncertain structures. This versatile strategy is intended to be free of any restriction on the

structure–TMD system configuration, the performance criterion, and the number of

robust control literature, including: (1) the linear fractional transformation (LFT) formulation

pertaining to the structured singular value (m) framework; (2) the concept of weighted multi-

input multi-output (MIMO) norms for characterizing performance; and (3) a worst-case

performance assessment method to avoid the unacceptable computation burden involved

with exhaustive search or Monte Carlo methods in the presence of multiple uncertainties.

Based on these, the robust design framework is organized into four steps: (1) modeling and

casting the overall dynamics into the proposed LFT framework that isolates the TMD system

as the controller, and the uncertainties as a structured perturbation to the nominal dynamics;

(2) setting up the optimization problem based on generalized indices of nominal

performance, robustness, and worst-case performance; (3) implementing a genetic algorithm

(GA) for solution of the optimization problem; and (4) post-processing the results for syste-

matic visualization, validation, and selection of preferred designs. This strategy has been

implemented on several illustrative design examples involving a seismically excited multi-

story building with different combinations of assumptions on the uncertainty, TMD con-

figuration, excitation scenarios, and performance criteria. The resulting solution sets have

been studied through various post-processing methods, including visualization of Pareto

fronts, uncertain frequency response plots, time-domain simulations, and random vibration

analysis.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Due to advantages of efficacy, reliability, and low cost, TMD systems have been extensively studied for implementation on
various structures, such as buildings [1,2], bridges [3], and tension leg platforms [4]. Some possible TMD realization schemes
for controlling horizontal motion of buildings (including spring-damper, rubber bearings, and various pendulum schemes)
have been discussed in [5]. Sometimes innovative physical realizations are also possible, e.g. see the roof-garden TMD design
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Nomenclature

Important symbols

d disturbance input vector, e.g. ground accelera-
tion and wind loading

e normalized control-target (error) output vec-
tor

Fc control force input to the plant exerted from
the TMD system

JNP, JR, and JWCP indices of nominal performance,
robustness, and worst-case performance

K(s) TMD system as the controller
P(s) plant dynamics, either 2-in/2-out ports or 3-

in/3-out ports
v normalized disturbance input vector
WI(s), WO(s) input/output weighting filters
y feedback output vector from the plant (input

to the controller)
z control-target (error) output vector
d uncertain real scalar element, �1rdr1
D structured uncertainty perturbation block

Some mathematical notations and definitions

A B
C D

shorthand for system transfer matrix
C(sI�A)�1B+D, corresponding to the state-

space realization:
_x ¼AxþBv
y¼ CxþDv

lower and upper LFTs defined as (provided that
the matrix inverses exist):

F ‘ðM,NÞ F ‘ðM,NÞ ¼M11þM12NðI�M22NÞ�1M21

F uðM,Q Þ FuðM,Q Þ ¼M22þM21Q ðI�M11Q Þ�1M12

where N 2 Cq2�p2 , Q 2 Cq1�p1 and M 2

Cðp1þp2Þ�ðq1þq2Þis consistently partitioned

List of acronyms

DMF dynamic magnification factor
FRF frequency response function
GA genetic algorithm
LFT linear fractional transformation
LMI linear matrix inequality
MIMO multi-input multi-output
SDOF single degree of freedom
SISO single-input single-output
SSV structured singular value (m)
TITO two-port input, two-port output
TMD (also: STMD, MTMD, UMTMD, IMTMD) tuned

mass damper, also: single TMD, multiple
TMD (MTMD), uniform MTMD, irregular
MTMD
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in the aforementioned reference. From a theoretical point of view, on the other hand, the STMD can be regarded as a narrow-
band filter tuned to the first structural frequency. This leads to vulnerability to mistuning effects [6] and degradation of the
STMD efficacy in mitigating structural response against excitations with a wide spectrum of frequency contents, like seismic
loads [2]. Moreover, a single massive TMD is rather difficult to install and maintain [7]; and, when subjected to dynamic
impulsive loads (like earthquake excitations) filtered through the structure, does not reach its full energy-absorbing potential
as quickly as required [2]. These factors have motivated the application of systems with several TMD units covering a
frequency range and/or physically distributed in space. In this paper, the term ‘‘TMD system’’ refers to any such configuration
of a number of TMD units installed on a generic structure. Examples of these configurations include the dual TMD [8] also
referred to as bi-TMD [9]; double TMD [10]; double-layered TMD [10]; interconnected multiple TMD [11] (interconnection of
TMDs in series); and, non-interconnected MTMD (NI-MTMD) [11] or simply referred to as MTMD which is the most broadly
used configuration. Different assumptions on the parameters have been considered for design of TMD systems. For instance,
in the MTMD case, equal masses and damping ratios along with uniform distribution of frequency ratios can be assumed for
the TMD units to simplify the design; resulting in a uniform MTMD (UMTMD) [12] compared to the irregular MTMD
(IMTMD) [13] where frequency and damping ratios of the TMD units constitute individual design variables. As previously
pointed out, some other investigations study physical distribution of TMD devices on structures, e.g. references [1,2] study
optimal placement of TMDs on building floors. Despite this extensive research, there is almost no study that offers a
convenient method and formulation to accommodate any arbitrary combination of structure–TMD system within a unified
approach. Other limitations of the investigations available in the literature are discussed in what follows.

In practice, structures and their dynamic characteristics are subjected to uncertainties in the mass, damping and stiffness
originating from a variety of sources, such as inadequate modeling of the boundary conditions at the structural joints, effects of
nonstructural elements, degradation due to aging, and fluctuations in structural mass, as well as uncertainties in the member
capacities, yield strengths, etc. Furthermore, the dynamic characteristics of structures change under earthquake or wind
excitations. Some structures have uncertain nonlinear properties even in the small amplitude range due to the contribution of
secondary members [15,16]. Therefore, in practical design problems, robustness of the TMD system to uncertainties must be
treated as a design concern to avoid undesired performance degradation and mistuning effects. Nevertheless, in most of the
previous works, optimization of the TMD systems was based on effectiveness; and, robustness was either not considered [17–
21] or qualitatively checked and commented on, only after the design [7,12,22–25]. See the brief discussion in [16] with further
details on these studies and the qualitative concepts regarding robustness. However, quite recently more attention has been
dedicated to the issue of robustness in TMD systems. Hoang and Warnitchai [26] proposed a robustness index defined as an
average performance of several samples of the uncertain system with the uncertain parameters following a specified
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probability distribution. Their procedure, although rather extendable to situations more general than MTMDs for SDOF
structures (the numerical example considered in that paper), is limited to mean square structural response reduction against
stationary stochastic excitation due to the Lyapunov-based formulation of the performance function and its gradient. In another
case in point, Li and Ni [27] proposed a rigorous gradient-based method that has the ability to design a robustly effective
IMTMD considering a desired level of estimation error in structural parameters. However, this procedure was intended only for
minimization of the maximum DMF of structural response (SISO case of HN optimization) and was presented only for a SDOF
structure with MTMD. In another relevant research, Dehghan-Niri et al. [16,28] proposed the novel idea of utilizing an index of
robustness along with effectiveness within a two-objective evolutionary optimization and demonstrated the efficacy of this
methodology for design of uniform and irregular MTMD systems for SDOF main structures with uncertain natural frequency.
Similar two-objective GA design methodologies have been proposed in [9,29]. In Ref. [29], Marano et al. proposed the
minimization of the mean and standard deviation of the structural displacement covariance computed through sampling as the
two objectives. This method aimed only at vibration mitigation of SDOF main systems with STMD against random base
acceleration modeled by a stationary filtered white noise process. In Ref. [9], Ok et al. demonstrated the application of GA with
nominal and worst-case robust performance indices as the two objectives for design of bi-tuned mass dampers attached to the
SDOF main system with uncertain stiffness. The main purpose of the aforementioned investigation was to develop practical
optimal design formulae for bi-TMDs within methodology and formulations that maintain simplicity.

In conclusion, each of the available methodologies for design of TMD systems targets a specific purpose and has its own
limitations and restrictive assumptions. These limitations can be categorized as:
1)
 Restrictions on the structure and TMD system configuration, e.g. analytical formulations assuming a SDOF structure
with a MTMD.
2)
 Restriction on design or performance criteria, e.g. a specific SISO norm from a specific excitation to a specific target output.

3)
 Considering only a simplistic single-parameter uncertainty, or treating the multiple-parameter uncertainty by

inefficient Monte Carlo-like (sampling) methods. There exist only few studies that use more computationally efficient
asymptotic expansion methods for reliability integrals (e.g. see Ref. [15]). Furthermore, these investigations target only
aleatory (stochastic) uncertainties (see Section 4 for a categorization of uncertainty types), and are constrained by
conditions to maintain the required analytical formulations tractable.

The present paper, on the other hand, is intended to overcome all these limitations. The first one is handled by the lower
LFT formulation introduced in Section 2; the second is resolved via the concept of weighted MIMO norms from any group
of disturbance v to error outputs e; and, the third is tackled through explicit representation of the multiple uncertainties as
a structured perturbation block within the rigorous LFT formulation of Section 4.2. This section exploits the SSV (m)
framework [14] and the LFT-based worst-case performance assessment methods [30] in the robust control literature. To
facilitate the design of the TMD systems in such a generalized sense, all the concepts, formulations and procedures are
collected into the four-step framework shown in Fig. 1.

It should be pointed out that the organization of the paper is not based on the four steps of the framework, but on the
logical flow of the concepts. The complete development of the LFT formulation required in Step I is postponed to Section 4.2
after its initial development in Section 2. The procedures associated with Step II are discussed in Sections 3 and 4, while Step
Modeling & Casting the Dynamics 
into the LFT Formulation 

• Modeling the structure as the plant 
• Selection of uncertain parameters 

and pulling out their δ’s
• Modeling the TMD system as the 

controller 

Optimization Problem Setup 

• Choosing design variables and 
constraints

• Selection of in/out weighting filters 
• Choosing the objectives and 

writing subroutines for computing 
them

GA Implementation 

• Algorithm type 
• GA tuning parameters 
• Convergence monitoring 

Post-processing of Results 

• Visualization (uncertain FRF plots, 
Pareto fronts, etc.) 

• Validation (time-domain 
simulations, random vibration 
analysis, etc.) 

• Selection of preferred designs 

Step IV
Step III

Step I Step II

Fig. 1. Flowchart of the proposed framework for robust design of TMD systems.
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IV is practically illustrated throughout the examples worked out in Section 5. GA (Step III), on the other hand, is considered a
standard optimization tool; hence, there is no specific section dedicated to it. Of course, some important relevant concepts
are briefly discussed in Sections 3–5, because the proposed framework greatly owes its simplicity and flexibility to GA.

2. LFT formulation for the structure–TMD system

In this section, we shall show that the dynamics of the structure with the TMD system can be cast as the LFT
interconnection of a TITO plant and a feedback controller, as shown in Fig. 2.

Considering disturbance d and control Fc as the two groups of inputs, and error output z and feedback y as the groups of
outputs, the TITO model for the structure referred to in Fig. 2 is

s
d F

z zd zF

y yd yF

A B B
P C D D

C D D
(1)

while the TMD system model is

s K K

K K

A B
K C D (2)

and the lower LFT [14] interconnection describing the mapping from the input group of signals d to the output group z would be

TzdðsÞ ¼F ‘ðP,KÞ ¼ PzdþPzFKðI�PyF KÞ�1Pyd (3-I)

where

s s

s s

Fd
Fzdz

Fzzdzz

Fd
Fydy

Fyydyy

A B A B
P PC D C D

A B A B
P P

C D C D

are the partitions of the transfer matrix P, consistent with the input/output grouping; or, equivalently:

s CL CL
zd

CL CL

A B
T P K C D (3-II)

where ACL, BCL, CCL, and DCL are the state-space matrices of the closed-loop system, defined as

ACL ¼
AþBF

~R�1DK Cy BF
~R�1CK

BK R�1Cy AKþBK R�1CyFCK

" #

BCL ¼
BdþBF

~R�1DK Cyd

BK R-1Cyd

2
4

3
5

CCL ¼ CzþCzFDK R�1Cy CzF
~R�1CK �

h
DCL ¼DzdþDzF DK R�1Dyd

with R¼ I�CyFDK , ~R ¼ I�DK CyF .
Structure
as the 

TITO Plant P

TMD System
as the FB 

Controller K

z

yFc

d

Fig. 2. LFT interconnection of the structural plant and the TMD controller.
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This formulation isolates the dynamics of the TMD system to be designed from that of the structural plant, facilitating the
performance evaluation of designs. It offers a systematic convenient way for definition of weighted MIMO norms as a means of
characterizing the performance of the controlled structural response from disturbance inputs to target quantities (see Section
3). The LFT machinery will be further exploited in Section 4.2 to pull out the parametric uncertainties embedded in the system.
2.1. TITO formulation for the structure

A generic scenario of an N-story shear building subjected to base acceleration and force excitation, as shown in Fig. 3, is
utilized to illustrate the required formulation for the structure.

The matrix equation of motion for the structure is as follows:

Ms €uþCs _uþKsu¼�MsrgagþFdþFctrl

z1 ¼Wuu, z2 ¼ €uþag (4)

where
Ms=diag(m1, m2, y, mN) is the structural mass matrix:

Ks ¼

k1þk2 �k2 0

�k2 k2þk3 �k3

&

�kN�1 kN�1þkN �kN

0 �kN kN

2
6666664

3
7777775

is the structural stiffness matrix.
Cs ¼

2zso1o2

o1þo2
Msþ

2zs
o1þo2

Ks is the proportional damping matrix (any other dissipation matrix can be also considered
without additional effort, if required) defined based on the damping ratio zs and the first two natural frequencies o1, o2 of
the structure. Note that the dissipation matrix assuming that damping forces depend only on generalized velocities is not
the only linear model of vibration damping (see Ref. [31] for a detailed discussion). However, for simplification of the
illustration, a dissipation matrix damping is assumed for the shear building model (this does not affect the generality of the
framework, because the performance measures are formulated using the plant P without any assumptions rather than
linearity).

rg=[1y1]T is the influence vector of the ground acceleration ag.
Fd , Fctrl are the disturbance forces (e.g. from wind load) and control forces (exerted by the TMD system) to the floors of

the building.

Wu ¼

1 0

�1 1

&

0 �1 1

2
6664

3
7775 is the weighting matrix utilized to extract the inter-story drifts (floors displacement relative to

each other) z1=[u1, u2�u1, y, uN�uN�1]T out of the floor displacements u relative to the base
and
z2 is the vector of floors absolute accelerations.
Fig. 3. N-story shear building subjected to base acceleration and force disturbances, equipped with ‘‘MTMD on ith floor’’ (a) and ‘‘STMD on every floor’’

(b) systems.
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Now, considering the following definition for the state vector and the input–output groups of the TITO model:

states : x¼
u

_u

� �
; inputs : d¼

ag

Fd

( )
, Fc ¼ Fctrl; outputs : z¼

z1

z2

( )
, y¼ z2

the following definition for the state-space matrices previously used in Eq. (1) would result:

A¼
0N�N IN�N

�M�1
s Ks �M�1

s Cs

" #
, Bd ¼

0N�1 0N�N

�rg M�1
s

" #
, BF ¼

0N�N

M�1
s

" #

Cz ¼
Wu 0N�N

�M�1
s Ks �M�1

s Cs

" #
, Dzd ¼

0N�1 0N�N

0N�1 M�1
s

" #
, DzF ¼

0N�N

M�1
s

" #

Cy ¼ �M�1
s Ks �M�1

s Cs

h i
, Dyd ¼ 0N�1 M�1

s

h i
, DyF ¼ ½M

�1
s � (5)

which completely determine the system P from disturbance d (base acceleration and force excitation) and control Fc input
(TMD system forces exerted to the floors) to error output z (inter-story drifts and floors absolute acceleration) and
feedback output y (absolute acceleration of building floors).
2.2. TMD system as the feedback controller

The equation of motion for a single TMD unit in terms of uT, its displacement relative to the ground, can be easily
derived as

mT ð €uTþagÞ ¼mT ð €uT� €uiþaiÞ ¼�kT ðuT�uiÞ�cT ð _uT� _uiÞ (6)

where mT, kT, and cT are the TMD mass, stiffness, and damping constant; ui is the displacement of the TMD support (the ith
floor to which the TMD is attached) relative to the ground; and, ai is the absolute acceleration of the ith floor (ai ¼ agþ €ui).
The right hand side of this equation is the sum of the spring and dashpot force to the TMD mass, the opposite of which is
exerted to the TMD support (ith floor) and is denoted by Fi. Therefore, the TMD unit can be regarded as a system block from
the support acceleration input (ai) to the force output (Fi), described by

_xT ¼AT xTþBT ai; xT ¼ uT�ui _uT� _ui
� �T

Fi ¼ CT xT (7)

where

AT ¼
0 1

�kT=mT �cT=mT

" #
, BT ¼

0

�1

� �
, CT ¼ kT cT

� �
Accordingly, each of the TMD systems configurations shown in Fig. 3 (as well as any other possible) can be viewed as an

interconnection of single TMD blocks as shown in Fig. 4. From the block-diagram representation of Fig. 4, it can be easily
concluded that the state-space matrices of the TMD system as the feedback controller K in Eq. (2), for the n-MTMD
installed on the ith floor case can be written as

½AK �2n�2n ¼ blkdiagðAT1,AT2,. . .,ATnÞ
T1

T2

Tn

T1

T2

TN

GaGF

ai
Fi

+

K K

PP
z zd d

y y

Fc
Fc

Fig. 4. (a) MTMD interconnection and (b) ‘‘STMD on every floor’’ interconnection.
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½BK �2n�N ¼

BT1

BT2

^

BTn

2
66664

3
77775Ga; Ga ¼ ½gaðjÞ�1�N , gaðjÞ ¼

1, j¼ i

0 otherwise

�

½CK �N�2n ¼ GF CT1 CT2 . . . CTn
� �

; GF ¼ GT
a

½DK �N�N ¼ 0N�N (8)

where blkdiag refers to the block diagonal arrangement of matrices. On the other hand, for the ‘‘STMD on every floor’’
configuration in Fig. 4b we would have

½AK �2n�2n ¼ blkdiagðAT1,AT2,. . .,ATnÞ

½BK �2n�N ¼ blkdiagðBT1,BT2,. . .,BTnÞ

½CK �N�2n ¼ blkdiagðCT1,CT2,. . .,CTnÞ

½DK �N�N ¼ 0N�N (9)

Note that n refers to the number of TMD units, while N is the number of building floors; and, these two coincide in the case
of ‘‘STMD on every floor’’. Any other distribution of TMD units on a building can be also formulated in a similar manner.
This approach also facilitates the redundancy study of the TMDs (effect of failure of individual TMD units on the overall
performance).
3. The nominal performance optimization problem

In the previous section it was shown that in view of the LFT formulation, we can consider the TMD system as a
controller for the structure that is intended to improve the closed-loop system response to disturbances. Consequently, a
natural performance objective for designing this controller would be reducing the closed-loop gain from disturbance
excitations d to target outputs z. System norms provide a precise measure for this purpose. For a MIMO system, as is the
case in point, a weighted matrix system norm would be preferred to account for: (1) relative magnitude of different
disturbance signals composing d; (2) frequency/spectral content of the signals; and (3) relative importance of error outputs
z in the design. The input–output weighted configuration for this purpose is shown in Fig. 5.

Accordingly, minimization of the following generalized weighted nominal performance index would be an appropriate
criterion for tuning the TMD system design variables x to achieve optimal nominal performance:

min
x

JNP ¼ :TevðsÞ:p ¼ :WOðsÞTzdðsÞWIðsÞ:p ¼ :WOðsÞF ‘ðPðsÞ,KðsÞÞWIðsÞ:p

s:t: design constraints (10)

where :.:p refers to the H2 or HN system norm [14] (p=2 or N), while WI and WO are the input and output weights
selected as proper stable transfer matrices of dimensions dim(d)�dim(v) and dim(e)�dim(z), respectively (for the
problem formulated in Section 2.1: dim(d)=N+1, dim(z)=2N). Formal definitions, existence conditions and computational
procedures for these H2 and HN weighted MIMO norms have been discussed in the Appendix.

As previously pointed out, the input weighting transfer matrix WI enables us to take into account the relative
magnitude and frequency content of the disturbance signals d consisting of base excitation (earthquake acceleration) and
force loading (wind-induced forces to the floors), with a general form (assuming dim(v)=N+1) of:

½WIðsÞ�ðNþ1Þ�ðNþ1Þ ¼
WeqðsÞ1�1 01�N

0N�1 WextðsÞN�N

" #
(11)

where Weq is the earthquake weighting filter and Wext is the weighting for the external forces to the floors. If the main
purpose of the TMD system is vibration attenuation against earthquake, as is the case in the examples considered in this
paper, Wext can be set to zero; then, the all-zero columns can be eliminated to yield the following simplified input weight:

½WI�ðNþ1Þ�1 ¼ ½Weq 01�N�
T (12)
P(s)

K(s)

WI(s) WO(s)v d e
z

yFc

Fig. 5. Input–output weighted LFT configuration.
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with dim(v)=1 (only base acceleration) and the earthquake weighting simply chosen as either 1 (no frequency content
information) or

WeqðsÞ ¼w0

2zgogsþo2
g

s2þ2zgogsþo2
g

(13)

where og and zg are characteristic ground frequency and damping ratio, and w0 is a scaling factor. This is a Kanai–Tajimi
[32–34] shaping filter that leads the designed TMD system better be trained (during the optimization process) against an
earthquake loading with a similar spectral content. The effect of this spectral content training will be illustrated in Section
5.1.2 with details and results. More complicated filters, such as the three stage filter used in [35], that enable a more
detailed modeling of the ground dominant frequency and soil characteristics can also be similarly incorporated. Moreover,
details on across-wind-excitation spectral loading can be found in the literature, e.g. [36,37], and can be used to form
appropriate input weights for design against wind loadings.

The role of the output weight, on the other hand, is to specify the amount of the designer’s emphasis on reducing each of
the different error outputs z consisting of the inter-story drifts and absolute accelerations of the floors. The general form of
this weighting, assuming dim(e)=2N, is

½WOðsÞ�2N�2N ¼
Wdrf ðsÞ 0N�N

0N�N WaccðsÞ

" #
(14)

with Wdrf and Wacc as the drift and acceleration output filters. But, if the main focus is reduction of inter-story drifts
(protection against structural damage), as is the case in all the design examples of Section 5, the following simplified
output matrix weight (after elimination of all-zero rows) is a suitable choice:

½WO1�N�2N ¼ IN�N 0N�N
� �

(15)

with dim(e)=N (only inter-story drifts as target controlled quantities); otherwise, if the primary emphasis is reduction of
floors absolute acceleration (protection against losses to the building contents), a simple choice would be as follows:

½WO2�N�2N ¼ 0N�N IN�N
� �

(16)

again with dim(e)=N but with the accelerations selected as target outputs.
The optimization problem, i.e. Eq. (10), might be solved by different methods. To overcome difficulties and

disadvantages involved in methods such as exhaustive search (unreasonably low efficiency and high computational cost)
and gradient-based methods (need for analytical formulation of the gradients, involved algorithmic complexities and
convergence concerns that seriously restrict the span of treatable problems), genetic algorithm (GA) has been selected.
Inspired from the concept of natural selection, GA shows a great promise of convergence to a nearly global optimum. GA
can also easily handle design constraints in Eq. (10): bounds on design variables x are naturally incorporated, while other
potential constrains on the TMD systems can be treated by penalty functions. Besides searching a descritized hypercube of
real design variables, GA has also the ability to search a combinatorial space. This is due to the flexibility in the genetic
coding and the independence to explicit parameterization of the objectives by design variables. This means that except for
the TMDs specifications, the number, location and configuration of the TMD units can also be simultaneously optimized. Of
course, exploiting all these possibilities is not the main purpose of this study. Due to these and other many advantages,
genetic algorithms are well-established in the literature (see Ref. [38] for details on GA operators and implementation
concepts), and widely used in various engineering problems including optimization of TMD systems [9,16,18,29].

4. The robust performance optimization problem

In the single objective optimization of the previous section, a perfect match between the model and actual structure
was assumed that if violated might result in a significant degradation of the actual effectiveness of the designed TMD
system. However, as explained in Section 1, this perfect match cannot be expected in practical situations due to the
existing uncertainties. Uncertainty is generally categorized as aleatory (due to inherent variation) and epistemic (due to
lack of exact knowledge). The former is usually modeled by random variables following specific probability distributions,
while the latter is modeled by parameters each lying in a specific interval [39]. This section is intended to tackle robust
optimization in the presence of generic multiple epistemic (interval) uncertainties. Section 4.1 deals with the simplest
form of the uncertain problem assuming only a single real uncertain parameter. This provides a link to the previous
robustness concepts in the literature and serves as a preamble to the much more complicated case of multiple-parameter
uncertainty studied in Section 4.2.

4.1. Single-parameter uncertainty

The mismatch between natural frequencies of the actual structure and its model has a most significant detuning effect
on the TMD system effectiveness. Hence, in this subsection, the single-parameter uncertainty is chosen as the following
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uncertain perturbation to the structural stiffness matrix:

Ksd ¼Ks,nomð1þwKdÞ, �1rdr1 (17)

where Ks,nom is the nominal stiffness matrix, Ksd is the perturbed structural stiffness matrix, wK is the uncertainty level, and
d is the real parametric uncertainty. We shall also modify our notation P for the structural TITO system to Pnom for the
system resulting from Ks,nom and Pd for that resulting from Ksd; and consequently, a generalized weighted performance
index for the uncertain structure can be defined as

JPðdÞ ¼ :WOF‘ðPd,KÞWI:p (18)

based on which the previously defined nominal performance index JNP would be

JNP ¼ :WOF‘ðPnom,KÞWI:p ¼ JPð0Þ (19)

In Ref. [16], the authors showed that the behavior and flatness of the effectiveness curve versus the estimation error is a
good qualitative concept of robustness against that error; and if quantified, yields a good measure of robustness. The same
reasoning, if applied to JP(d), can lead to the following index JR as a suitable index of robustness:

JR ¼
1

ndþ1

Xnd

j ¼ 0

½JPðdjÞ�JPð0Þ�
2

0
@

1
A

1=2

(20)

where dj=�1+2(j�1)/(nd�1) for j=1ynd is a descritization of the uncertain parameter d over its allowable range.
Due to the conflicting behaviors of robustness and nominal performance, as has been shown in [16], a good strategy is

to formulate a two-objective optimization problem. Based on the indices proposed in this paper, this would be

min
x

JNP

JR

( )
s:t: design constraints (21)

where the solution for x (vector of design variables) will not be a single point x* only; but a set of Pareto optimal points. A
point x* in the feasible design space S is called Pareto optimal if there is no other point x in the set S that dominates x*

(improves at least one objective function without degrading another one) [16]. An extremely appealing characteristic of GA
is the potential to make the population converge to the Pareto optimal set incorporating a great number of possible non-
dominated compromises between the two objectives. This is a further motivation, in addition to the reasons discussed in
Section 3, to adopt GA in the current investigation. Details on multi-objective GA concepts and implementation can be
found in literature [40], as well as different examples of implementation, also including TMD system design [9,16,29].

Another important issue is the concept of worst-case performance [5,9] which motivates the formulation of the
following index based on JP(d) to characterize robust performance:

JWCP ¼ max
d allowable

JPðdÞC max
1r jrnd

JPðdjÞ (22)

The worst-case performance index in Eq. (22) guarantees avoidance of overestimation and thus achievement of high robust
performance, if utilized as the single objective or as the preference criterion to select a solution from all those obtained
through the two-objective optimization (21). As will be discussed in Section 5.1.1, the two mentioned ways of utilizing
JWCP are very similar in terms of the final result. Therefore, if robust design is the main purpose, single objective worst-case
performance minimization is preferred over two-objective minimization (21) due to the much lower computational cost
(single objective GA runs need much smaller population sizes and less number of generations). The other appealing
characteristic of the worst-case performance, specifically in the case of p=N, is that it can be generalized to the multiple-
parameter case in a computationally efficient way. This is what we shall pursue in the next subsection.

4.2. Multiple-parameter uncertainty

Although the robustness concepts of the previous subsection can be directly generalized to the multiple-parameter
uncertainty case, the exhaustive search over a fine descritized grid of the uncertain parameters hypercube is not a
computationally acceptable method for more than two uncertain parameters. In this section, we shall focus on a
computationally efficient way to assess the HN worst-case performance index for the case of generic multiple-parameter
uncertainty. Here, the theoretical background is much more involved [14,30] and a more complicated uncertainty
modeling is required. Similarly as we did in Section 2 to isolate the TMD system dynamics from the plant, now we need to
pull out the uncertainties in the plant parameters and collect them into the structured perturbation block D within the LFT
framework of Fig. 6.

According to this LFT interconnection, the mapping from excitation v to output e (we assume that any input or output
weighting is absorbed into P) is described as

TD
evðsÞ ¼FuðF ‘ðP,KÞ,DÞ ¼FuðM,DÞ ¼MevþMerDðI�MhrDÞ

�1Mhv (23)



Table 1
Multiple-parameter uncertainty illustrative scenario.

Uncertainty in the mass of all the floors mi ¼mið1þwidiÞ; i¼ 1,2,. . .,N or in matrix form:

Ms ¼MsðIþWMDMÞ

where WM ¼ diagðw1 ,. . .,wNÞ, DM ¼ diagðd1 ,. . .,dN Þ

Uncertainty in the stiffness of the first floor k1 ¼ k1ð1þwNþ1dNþ1Þ

Uncertainty in the structural damping ratio z¼ zð1þwNþ2dNþ2Þ

�1rdir1 for i=1,2, y, N+2; wi’s represent the uncertainty level; and the bar symbol represents the nominal value.

Fig. 7. Block diagram of the uncertain plant with uncertainties embedded in Ms
�1, Ks and zI.
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Fig. 6. LFT framework with the TMD system as the controller and the structured uncertainty.
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where a consistent partitioning of M=F ‘ðP,KÞ is assumed. FuðM,DÞ has a useful interpretation: Mev is the nominal mapping
from v to e accomplished by the nominal structure–TMD system, and this nominal mapping is perturbed by D; Mhr, Mhv, and
Mer reflect a priori knowledge on how the uncertainty affects the nominal map. Since the mapping from disturbance to target
outputs includes all information required for characterizing the structure–TMD system performance, this LFT formulation
seems quite promising. In particular, we are interested in calculating the following worst-case performance index:

JWCP,1 ¼ max
D allowable

:TD
evðjoÞ:1 ¼ max

D allowable
:F uðMðjoÞ,DÞ:1 (24)

At this point, two questions arise:

1)
 How to cast a given problem into this LFT framework?

2)
 How to calculate JWCP,N after having derived M and the structure of D for our system?
The answer to the first question is a procedure referred to as pulling out the d’s that we shall illustrate through a generic
example, while the second is related to mathematical theorems and numerical algorithms in the field of robust control that
we will briefly discuss and cite at the end of this subsection.

Let us consider the N-story shear building with an n-MTMD on the top floor subjected to only base acceleration of
unknown frequency content, i.e. WI=[1 01�N]T, with only the inter-story drifts as target output quantities, see Eq. (15).
Now assume the quite generic example of multiple parametric uncertainty described in Table 1.

It is easier to illustrate the procedure via block-diagram graphical representation. So consider the following
rearrangement of Eq. (4) with a little change in notation, and its block-diagram representation in Fig. 7:

€u ¼�az _u�M�1
s Ksðbz _uþuÞþM�1

s GFFc�rgv

e¼Wuu, y¼Ga €uþv (25)

where Fc=FMTMD, v=ag, b=2/(o1+o2), and a=bo1o2. Note that Ga and GF have been absorbed from Eq. (8) for the MTMD
into the plant, so that Fc and y are scalars and the MTMD block to be used as the controller K is SISO (Ga and GF should be
omitted from matrices BK and CK of the MTMD block in Eq. (8)).



Fig. 8. Pulling out d’s from Ms
�1, Ks, and fI blocks.
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Now consider the blocks that embed the uncertainties (highlighted in Fig. 7). It is an easy task to check that these blocks
can be expanded as shown in Fig. 8 to separate the nominal values and the uncertain perturbations. For example, Fig. 8b is
the graphical equivalent of the following relation:

k1ð1þwNþ1dNþ1Þþk2 �k2 0

�k2 k2þk3

&

0 kN

2
66664

3
77775¼ ðIþWK2dNþ1WK1Þ

k1þk2 �k2 0

�k2 k2þk3

&

0 kN

2
66664

3
77775 (26)

where WK1=[1 1 y 1] and WK2=[wN+ 1 0 y 0]T. Also note that in Fig. 8c, Wz=wN+ 2IN.
By combining Figs. 7 and 8, and graphically rearranging the signals and blocks, the following block diagram is obtained.
As can be seen, this block-diagram matches the LFT framework of Fig. 6. Accordingly, the structure of the uncertainty

perturbation is D=blkdiag(diag(d1, y, dN+1),dN+2IN). Also, the model of the uncertainty pulled out plant with state vector
x=[uT, _uT]T, three groups of inputs r¼ ½rT

M ,rT
K ,rT

z �
T, v, and Fc, and the three groups of outputs h=[hM

T , hK
T, hz

T]T, e, and y is as follows:

r v F

h hr hv hF

e er ev eF

y yr yv yF

A B B B
C D D D

P
C D D D
C D D D

(27)

It is easy to verify that all the matrices without a subscript r or h are defined based on the nominal values as if there was no
uncertainty, while those with these subscripts can be derived as follows:

Br ¼
0 0 0

�WM �M
�1

s WK2 �aI�bM
�1

s Ks

� �

Ch ¼

�M
�1

s Ks �zbM
�1

s Ks

WK1Ks zbWK1Ks

0 zWz

2
664

3
775, Dhr ¼

�WM �M
�1

s WK2 �bM
�1

s Ks

0 0 bWK1Ks

0 0 0

2
664

3
775

Dhv ¼ 0, DhF ¼
M
�1

s GF

0

" #
, Der ¼ 0

Dyr ¼ �GaWM �GaM
�1

s WK2 �GaðaIþbM
�1

s KsÞ

h i
Now we shall address the second question posed at the beginning of this subsection. Let us take a closer look at Eq. (24)

for JWCP,N and do some manipulations:

JWCP,1 ¼ max
D allowable

:F uðMðjoÞ,DÞ:1 ¼ max
D allow

max
o

s½FuðMðjoÞ,DÞ�

¼max
o

max
D allow

s½F uðMðjoÞ,DÞ�C max
1r irNo

max
D allow

s½F uðMðjoiÞ,DÞ�
� 	

(28)

where s denotes the greatest singular value. First the maximizations have been interchanged, then the frequency range is
discretized to No grids. At each frequency oi, M(joi) is a constant complex matrix. This implies that we can focus on the constant
matrix problem (the maximization inside the parentheses in the last expression), and re-solve at each frequency. In the robust
control literature, there are investigations zooming on approximate solutions for the constant matrix problem. A well-known
algorithm [30] uses the divide and conquer strategy based on upper and lower bounds for this problem. The lower bound is
computed through an iterative procedure that mimics Hamiltonian methods for state-space norm calculations in its substeps. The
upper bound calculation, on the other hand, is based on a LMI formulation. To obtain JWCP,N, such a procedure should be repeated
over the frequency grid. However, since the peak-over-frequency is of interest, large frequency ranges can be quickly eliminated in
order to reduce the computation time. Ref. [41] discusses relevant software implementation.

The formulation developed in this section unifies the robust design of passive TMD systems for structures with multiple
uncertainties with the rigorous SSV (m) framework in robust control (see Ref. [42] for a relevant example of active
structural control). Besides real parametric uncertainty, this framework can also handle other types of uncertainties such



Fig. 9. Block diagram of the uncertain plant–TMD system with uncertainties pulled out.
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A. Mohtat, E. Dehghan-Niri / Journal of Sound and Vibration 330 (2011) 902–922 913
as the neglected dynamics introducing complex uncertainty blocks into D. Of course, this type of uncertainty is more
relevant to active control where high-frequency neglected dynamics can have detrimental effects on system characteristics
such as stability and noise immunity. The advantage of this unification is the possibility to adopt previously developed
methods and inspire from ideas in the robust control literature for design of passive vibration absorbers as has been
demonstrated in this section (Fig. 9).
5. Implementation examples

This section demonstrates how easily the method can be implemented on various problems with different assumptions,
and illustrates the post-processing step of the proposed framework (Fig. 1).

The structural model considered for all examples of this section is a 7-storied shear building with the following nominal
structural properties: k=[2.5,2.5,2.5,2 2 2 2]�107 (N/m), m=5.5�104

� [1,1, y, 1] (kg) and zs=0.01. The building is
excited only by ground acceleration, and its frequency response (in terms of the inter-story drifts of the first and top floors)
is depicted in Fig. 10. The structural mode peaks and frequencies have been also clearly illustrated.

In the GA optimization, the non-dimensionalized parameters of the TMD units have been used as design variables.
Assuming equal distribution of the total TMD system mass, the design variables vector x will comprise the frequency ratios
bi and damping ratios zi of the TMD units which can be conveniently searched within reasonably predictable bounds.
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The parameters of the TMD units in the formulation of Section 2.2 can then be computed as

mT ,i ¼ mi �ms,tot , kT ,i ¼mT ,iðbios1Þ
2, cT,i ¼ 2zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mT,ikT ,i

q
, mi ¼ mtot=n (29)

where n is the total number of TMD units; mtot is the ratio of the total mass of the TMD system to the total mass of the
building ms,tot; and os1 is the first natural frequency of the building.

5.1. Single-parameter uncertainty examples

Several design examples will be considered in this subsection, each having a different combination of TMD system
specifications and minimization objectives. Of course, all the examples assume the single-parameter uncertainty (17) with
wk=0.05. All these cases (designs I, II, y, V) are listed and summarized in Table 3 along with their respective assumptions.
Each design example requires a two-objective GA run as described by Eq. (22). For instance, design I that is the typical
central example (with which all other designs are compared) has been obtained by a GA run described in Table 2.

The minimization objectives JNP and JR are defined based on JP(d) defined in Eq. (18) applying Eqs. (19) and (20),
respectively. According to the designer’s purpose, different types of norm, and input/output weights can be assumed for
JP(d). In this study 3 different definitions for JP(d) are considered as listed in Table 3.

5.1.1. Different TMD system specifications

To study the influence of the TMD system specifications on its effectiveness–robustness characteristics, in this
subsection, an IMTMD on top floor (Design I), a UMTMD on top floor (Design II), and the ‘‘STMD on every floor’’
configuration (Design III) are designed as described in Table 3. The resulting Pareto fronts in the criterion space are
compared in Fig. 11.

The Pareto front of an STMD on top floor has been also included in Fig. 11 for further comparison. As can be seen, the
UMTMD system (with 3 design variables) dominates the STMD system (with 2 design variables), mostly in terms of
nominal performance. Similarly, the IMTMD (with 14 design variables) dominates the UMTMD; this advantage is most
significant in the high robustness (low JR) region. In other words, irregular design enables us to design a highly robust
MTMD system with considerably lower sacrifice of nominal performance. Finally, Design III dominates all previous designs
by exploiting the ‘‘STMD on every floor’’ configuration that physically allows the installation of an overall heavier TMD
Table 2
Specifications of GA run for design I.

Algorithm type Two branch tournament

Minimization objectives JNP and JR defined based on JP1(d)

Population size 500

Pareto fraction 0.4

Number of generations 400

Cross-over
Type Scattered

Prob. 0.8

Mutation probability 0.05

Table 3
Specifications of design examples of Section 5.1.

# TMD system specifications Minimization objectives JNP and JR defined based on Section

I Irregular MTMD, n=7, mtot=0.03 x¼ b1 . . . b7 z1 . . . z7

h iT

JP1ðdÞ ¼ :WO1F ‘ðPd ,KÞ
1

0N�1

" #
:
1

b 5.1.1/2

II Uniform MTMD, n=7, mtot=0.03 x¼ Db bo z
h iT

a JP1ðdÞ 5.1.1

III STMD on every floor, mtot=0.06 x¼ b1 . . . b7 z1 . . . z7

h iT JP1ðdÞ 5.1.1

IV Irregular MTMD, n=7, mtot=0.03 x¼ b1 . . . b7 z1 . . . z7

h iT

JP2ðdÞ ¼ :WO1F ‘ðPd ,KÞ
Weq1

0N�1

" #
:
1

c 5.1.2

V Irregular MTMD, n=7, mtot=0.03 x¼ b1 . . . b7 z1 . . . z7

h iT

JP3ðdÞ ¼ :WO1F ‘ðPd ,KÞ
Weq2

0N�1

" #
:
1

d 5.1.2

a UMTMD—Db: total range of TMDs frequency ratio, bo: offset of the central TMD frequency ratio b1 ¼ 1þbo�Db=2, bi ¼ bi�1þDb=nði¼ 2. . .7Þ,

zi ¼ zði¼ 1. . .7Þ.
b WO1 as defined in Eq. (15).
c Weq1 ¼Weq fog ¼ 3rad=s, zg ¼ 0:3g

�� (Eq. (13)).
d Weq2 ¼Weq fog ¼ 12rad=s, zg ¼ 0:6g

�� (Eq. (13)).
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system on the building (a numerical value of mtot=0.06 compared to mtot=0.03 is used in these examples). It is important to
point out the significant effect of mtot: if the ‘‘STMD on every floor’’ system were designed with mtot=0.03, it would be
dominated even by the STMD on top floor.

Now, let us analyze the trade-off between nominal performance and robustness by selecting three design points I1, I2,
and I3 on the Pareto curve I as shown in Fig. 11. These design points correspond to specific IMTMD system designs: I1 is the
most effective; I3 is highly robust; and, I2 achieves the best worst-case performance, i.e. the least value of JWCP in Eq. (22) on
the Pareto curve I. The JP(d)-curves corresponding to these design points are illustrated in Fig. 12.

As can be seen from Fig. 12, design point I1, being the most effective design under nominal conditions, is the most
sensitive to uncertainty. On the other hand, the curve corresponding to design point I3 is the flattest (the most robust in
terms of JR); but, it is less effective than I2 in the entire uncertainty range of interest. In this sense, the design point I2 is
preferred to I3 for achieving robust performance in the presence of uncertainty. Accordingly, minimizing the worst-case
performance JWCP is an appropriate preference criterion for choosing a robust solution from the entire set of JNP� JR optimal
set. This would yield a solution close to the solution obtained by direct single objective minimization of JWCP. Indeed, the
interesting advantage of two-objective optimization is that it results in an entire set of Pareto optimal solutions that
incorporate a broad spectrum of design options. Of course, the designer should decide whether or not obtaining such a
spectrum of designs justifies the augmented computational cost of two-objective optimization.

To further illustrate the characteristics of the two preferred TMD systems designs for achieving nominal (I1) and robust
(I2) performance, the uncertain frequency responses (from ground acceleration to the inter-story drifts of the first and top
floors) have been depicted in Fig. 13. This figure shows that the robust design manifests lower sensitivity to the variation of
the uncertain parameter (of course, the difference is not dramatic because the level of uncertainty is low). In order to find



Fig. 13. Uncertain FRFs (from ground acc. to the inter-story drifts of the first and top floors) for two designs I1 and I2 (thick black curve: nominal response

and red curves: uncertain samples).
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out the amount of vibration suppression accomplished by TMD systems I1 and I2, it is useful to compare this figure to
Fig. 10 that shows the uncontrolled building FRF.
5.1.2. Different frequency contents of excitation

A priori knowledge of the exact disturbance signal (or signals) is not available for design of the TMD system. Indeed,
mitigation of the unknown disturbance is the primary task expected from the TMD system as a vibration controller.
However, some information on the frequency content of the potential excitations might be available a priori; and we
should try to take most possible advantage out of this information. For seismic vibration control, the ground excitation can
be modeled by a stationary stochastic process with a spectral content of the form proposed by Kanai [43] and Tajimi [44],
as previously presented in Eq. (13). In this subsection, the advantage of introducing such information into the design
process will be investigated. Two spectra denoted by Weq1 (og=3 rad/s, zg=0.3) and Weq2 (og=12 rad/s, zg=0.6) in Table 3
(with ground frequencies near the first and second structural frequencies) are considered in this study, as shown in Fig. 14.
These spectra [33] match the frequency contents of Uemachi (a simulated ground motion using fault rupture model) and
El-Centro (the well-known seismic event recorded during the Imperial Valley, California earthquake of May 18, 1940); and,
are utilized in the definition of JP2(d) (Designs IV) and JP3(d) (Design V), respectively.

The Design sets IV and V in JNP� JR criterion spaces based on JP2(d) (with Weq1 as the input weight) and JP3(d) (with Weq2 as
the input weight) have been respectively shown in Fig. 15a and b, along with Design set I for comparison. At the first glance,
these visualizations might seem ambiguous and require clarification. For each design set, two criterion spaces can be
considered: one utilized for optimization, and the other used for visualization. Consider Design set IV, for instance, where JNP

and JR based on JP2(d) have been utilized as objectives for optimization. In Fig. 15a, this design set has been visualized in the
same criterion space as has been optimized; hence, it constitutes a Pareto front of non-dominated solutions in this space. In
Fig. 15b, on the other hand, Design IV has been visualized in a different criterion space (the criterion space based on JP3(d));
consequently, it does not constitute a non-dominated Pareto front in this space. The opposite holds for Design set V; while,
design I, in both subfigures, is visualized in criterion spaces different from the optimization space. Obviously, a post-
processing (re-computation of objective indices) is required for visualization of a design curve in a criterion space different
from its original optimization space. This post-processed visualization enables us to exactly assess the improvement of the
effectiveness–robustness characteristics of the TMD system due to appropriate consideration of excitation spectral content
and vice versa, i.e. the degradation effect due to not considering or inappropriately accounting for the frequency content of
the disturbance.



Fig. 14. Kanai–Tajimi filters used in Designs IV and V.

Fig. 15. Visualization of design sets in criterion space based on (a) JP2(d) and (b) JP3(d).
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Compared to Design IV, Design V is closer to Design I in both criterion spaces (Fig. 15 a and b); in other words, influence
of Weq1 on the design is more significant than Weq2 as its shape shows more deviation from the constant (frequency-
independent) filter Weq=1 used in Design I.

Now, for final assessment and validation, let us analyze the efficacy of the designs by time-response simulations.
The most effective points IV1 and V1 (from Designs IV and V) are selected and compared to the most effective design
point I1 (from the previous subsection) in terms of the first floor inter-story drift response under nominal conditions.
For performance evaluation of these designs against seismic excitations with frequency content similar to the
Uemachi scenario, response to stationary stochastic process has been simulated. Such a random signal is generated by
filtering a white noise through Weq1 and then scaling to achieve a peak ground acceleration (PGA) of 0.5 g. Fig. 16
shows a sample of such a simulation. Final performance evaluation can be carried out by comparison of the peak and rms
reduction of random vibrations that each design accomplishes. Table 4 presents the final results averaged over 1000
simulations:

As expected according to the previous observations from Fig. 15, the results of Table 4, by random vibration analysis in
time domain, show that consideration of consistent frequency content (Design IV) improves the result compared to when
no frequency information is taken into account (Design I) or inconsistent information is used (Design V); where in the
latter case, the result is even worsened. This statement proves again true (by interchanging IV2V) for the case of Weq2

frequency content. This time validation is carried out via deterministic simulation against the El-Centro historical
earthquake record, in Fig. 17. Although the improvements are moderate, the designs cannot be considered truly optimal if
these improvements are not applied.
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Table 4
Random vibration analysis results (Uemachi).

Reduction of: Design I1 (%) Design IV1 (%) Design V1 (%)

Response peak 35.7 37.1 34.6

Response rms 40.4 42.2 39.3
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5.2. Multiple-parameter uncertainty example

Consider the 7-storied shear building subject to the multiple-parameter uncertainty described in Table 1 with
w1=w2=?=w7=0.1, w8=0.2, and w9=0.75. Let us set up a single objective GA for designing an irregular 7-MTMD
(14 design variables), once with JNP,N as the single objective (nominal design), and once with JWCP,N (robust design). All the
assumptions and formulations follow the example of Section 4.2. The resulting MTMD designs (the damping and frequency
ratios of the 7 TMD units) have been compared in Fig. 18. Due to the irregularity of the design and several number of
influencing factors, specific results should not be generalized. However, there is a reasonable trend that can be generalized:
more robust MTMD designs cover a broader frequency range and tend to have more damping.

The FRF of the building equipped with each individual MTMD design has been shown in Fig. 19. The FRF of the robust design
manifests lower sensitivity to uncertainties, especially near the second mode of vibration which is the critical frequency.

Table 5 lists the numerical value of the nominal and worst-case performance indices for the two designs. As can be seen,
the nominal design can suffer up to a 200% increase of gain (worst-case gain compared to the nominal gain) due to
uncertainties; while, the gain increase for the robust design is at most 46%. Interestingly, for the building controlled by the
robust MTMD, the critical frequency associated with the worst-case gain is near the second mode of vibration, while
the nominal peak gain occurs at the first mode. For the building with the nominally optimal MTMD both peaks occur near
the second mode.

The worst-case combination of parameters happens for d1=d2=d5=d7=1 and d3=d4=d5=d8=d9=�1. It corresponds to
the least allowable stiffness of the first story and structural damping, and a distribution of the mass of the floors that favors
the second vibrational mode-shape (least allowable mass for the 3 floors in the middle, and the maximum allowable for the
others). An interesting fact about this worst-case scenario is that it has happened at a corner of the uncertain parameters
cube. Based on experience with several numerical simulations, the authors suspect that this is true for any problem of the
generic class considered in this paper. This can avoid the cost and complexity involved with computing the worst-case gain
bounds, and would lead to the exact value. The worst-case combination of parameters that the existing algorithms, e.g. the
function wcgain in MATLAB Robust Control Toolbox [45], report is just the parameter combination attained at the end of
the iterative search procedure for computing the lower bound on the worst-case gain. For the problem at hand, this will
not always yield a corner; but, numerical experiments on this problem have shown that searching only the corners always
improves (or at least, maintains) the result obtained from the lower bound procedure. However, no relevant theoretical
grounding has been found in the literature. Hence, if theoretical guarantee is required, the divide and conquer strategy
based on upper and lower bounds must be carried out.
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Fig. 18. Comparison of the nominal and robust designs in terms of design variables (damping and frequency ratios of the TMD units).

Table 5
Comparison of the nominal and robust designs in terms of performance indices.

Nominal design Robust design

Nominal performance (JNP,N) 0.1405@ocr=12.28 rad/s 0.2278@ocr=4.30 rad/s

Worst-case performance (JWCP,N) 0.4215@ocr=11.75 rad/s 0.3325@ocr=11.76 rad/s



Fig. 19. Uncertain FRFs (from ground acc. to inter-story drifts of the first and top floors) for nominal and robust designs (thick black curve: nominal

response and red curves: uncertain samples).
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6. Conclusions

Toward establishing the proposed generalized framework for robust optimal design of TMD systems, the following
primary contributions and results have been presented:
1)
 The LFT formulation: A rigorous LFT formulation has been introduced that isolates the TMD system as a feedback controller
and the uncertainties as a structured block perturbing the nominal dynamics. It has been shown that this formulation can
accommodate a general structure with any TMD system configuration and multiple-parameter uncertainty.
2)
 Generalized performance indices for optimization: The concept of weighted MIMO norms from external disturbance
inputs to control-target quantities has been used as the most general measure of performance. In this way, knowledge
about the frequency content of the excitations can be incorporated and the H2 or HN optimization of structural
response in terms of different quantities (inter-story drifts or floor accelerations) can be formulated in a unified manner.
A nominal performance index, a robustness index and a worst-case performance index have been formulated
accordingly. The latter index in conjunction with the structured uncertainty modeling strategy has been shown to be
efficiently computable in the presence of multiple-parameter uncertainty.
3)
 Exploitation of evolutionary heuristics: Advantages of exploiting evolutionary heuristics were demonstrated through
implementation of GA optimization.
4)
 Assumptions on the TMD system: Comparison of IMTMD and UMTMD solution sets, designed to be installed on the top
floor of a multi-story building, have demonstrated domination (in terms of effectiveness–robustness Pareto optimality)
of irregular design, quite significant in the high robustness region. It has been also shown that by spatial distribution of
the TMD units using a simple configuration of ‘‘STMD on every floor’’, a totally heavier and hence dominant TMD system
can be exploited.
5)
 Frequency content of excitation: Consideration of frequency content information, through application of input weighting
filters, has been shown to improve effectiveness–robustness characteristics of the TMD systems against excitations of
consistent spectral content. Accordingly, a seismological study on the site plan of implementation and an estimation of
the wind loadings spectral content can be beneficial to the TMD system design.
6)
 The active control perspective toward passive optimization: Application of ideas in active control theory for passive design of
TMD systems has proved particularly beneficial: it has enabled the development of a flexible and rigorous formulation
and utilization of worst-case performance assessment algorithms previously developed in robust control literature (far
more superior than exhaustive search and existing Monte Carlo methods available for passive optimization). In a more
general sense, the present paper can be considered a first step toward unification of passive and active TMD systems
design in view of robust control. Future research in this context can involve simultaneous synthesis of the passive
mechanical parameters and the control law for active TMD systems, or utilization of fixed-structure active control
synthesis schemes for design of passive TMD systems (e.g. instead of the GA optimization scheme).
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Appendix. Formal definitions and computation of the weighted MIMO norms

Consider the general input–output weighted LFT configuration of Fig. 5 formulated as the cascade interconnection of
the input weight, the non-weighted LFT and the output weight:

s s s s sIOve

O O CL CL I I a a

O O CL CL I I a a

T W P K W

A B A B A B A B
C D C D C D C D

(A-1)

according to the state-space realizations of the input and output weighting filters; the state-space matrices for the (non-
weighted) LFT configuration described by Eq. (3-II); and, the resulting augmented matrices for the weighted LFT
configuration, described as

Aa ¼

AO BOCCL

0 ACL

" #
BODCL

BCL

" #
CI

0 AI

2
664

3
775, Ba ¼

BODCL

BCL

" #
DI

BI

2
664

3
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Ca ¼ CO DOCCL DODCLCI
� �

, Da ¼DODCLDI

This augmented system Tev(s), a stable structural plant controlled by a passive mechanical controller and weighted
through proper stable filters, is a proper and real rational stable transfer matrix (2 RH1); hence, its HN norm exists and is
defined as [14]:

:Tev:1 ¼ sup
ReðsÞ40

s½TevðsÞ� ¼ sup
o2R

s½TevðjoÞ� (A-2)

with s denoting the greatest singular value. Furthermore, Tev(s) is also strictly proper (2 RH2), provided that

Da ¼DODCLDI ¼ 0 (A-3)

holds, allowing the following definition [14] for its (finite) H2 norm:

:Tev:2 ¼
1

2p

Z 1
�1

trace½T�evðjoÞTevðjoÞ�do
� 	1=2

(A-4)

Condition (A-3) is quite easily satisfied: considering the definition for DCL in (3-II) and substituting Dzd from (5) and
DK=0 for both TMD configurations (see Eqs. (8) and (9)) leads to

Da ¼DODCLDI ¼
DO,drf 0

0 DO,acc

" #
0 0

0 M�1
s

" #
DI,eq 0

0 DI,ext

" #
¼

0 0

0 DO,accM�1
s DI,ext

" #
(A-5)

where we have used a block partitioning of numeric matrices DO and DI consistent with the partitioning of the transfer
matrices WO and WI presented in Eqs. (14) and (11), respectively. Eq. (A-5) shows that (A-3) holds iff DO,accMs

�1DI,ext is zero.
This means that if the input–output path from external force disturbance to acceleration target output is weighted through
an input or output strictly proper filter, (A-3) will be satisfied. Under this condition, the 2-norm is easily computed based
on the state-space matrices after solving a Lyapunov equation [14] for which efficient algorithms exist (e.g. see Ref. [46]).
The computation of the HN norm (not requiring Eq. (A-3) to be satisfied), on the other hand, is more involved and needs
numerical search. Direct application of the formal definition equation (A-2) is not efficient; however, there are other well-
established numerical algorithms, e.g. Ref. [47] presents an efficient algorithm (with guaranteed accuracy) based on the
relation between the singular values of the transfer function matrix and the eigenvalues of a related Hamiltonian matrix
constructed from the state-space matrices of the system.
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